Text clustering and topic extraction are two important tasks in text mining. Usually, these two tasks are performed separately. For topic extraction to facilitate clustering, we can first project texts into a topic space and then perform a clustering algorithm to obtain clusters. To promote topic extraction by clustering, we can first obtain clusters with a clustering algorithm and then extract cluster-specific topics. However, this naive strategy ignores the fact that text clustering and topic extraction are strongly correlated and follow a chicken-and-egg relationship. Performing them separately fails to make them mutually benefit each other to achieve the best overall performance. In this paper, we propose an unsupervised text clustering and topic extraction framework (ClusTop) which integrates text clustering and topic extraction into a unified framework and can achieve high-quality clustering result and extract topics from each cluster simultaneously. Our framework includes four components: enhanced language model training, dimensionality reduction, clustering and topic extraction, where the enhanced language model can be viewed as a bridge between clustering and topic extraction. On one hand, it provides text embeddings with a strong cluster structure which facilitates effective text clustering; on the other hand, it pays high attention on the topic related words for topic extraction because of its self-attention architecture. Moreover, the training of enhanced language model is unsupervised. Experiments on two datasets demonstrate the effectiveness of our framework and provide benchmarks for different model combinations in this framework.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: https://github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.
translated by 谷歌翻译
In this paper, we study the problem of a batch of linearly correlated image alignment, where the observed images are deformed by some unknown domain transformations, and corrupted by additive Gaussian noise and sparse noise simultaneously. By stacking these images as the frontal slices of a third-order tensor, we propose to utilize the tensor factorization method via transformed tensor-tensor product to explore the low-rankness of the underlying tensor, which is factorized into the product of two smaller tensors via transformed tensor-tensor product under any unitary transformation. The main advantage of transformed tensor-tensor product is that its computational complexity is lower compared with the existing literature based on transformed tensor nuclear norm. Moreover, the tensor $\ell_p$ $(0<p<1)$ norm is employed to characterize the sparsity of sparse noise and the tensor Frobenius norm is adopted to model additive Gaussian noise. A generalized Gauss-Newton algorithm is designed to solve the resulting model by linearizing the domain transformations and a proximal Gauss-Seidel algorithm is developed to solve the corresponding subproblem. Furthermore, the convergence of the proximal Gauss-Seidel algorithm is established, whose convergence rate is also analyzed based on the Kurdyka-$\L$ojasiewicz property. Extensive numerical experiments on real-world image datasets are carried out to demonstrate the superior performance of the proposed method as compared to several state-of-the-art methods in both accuracy and computational time.
translated by 谷歌翻译
Linear temporal logic (LTL) is a widely-used task specification language which has a compositional grammar that naturally induces temporally extended behaviours across tasks, including conditionals and alternative realizations. An important problem i RL with LTL tasks is to learn task-conditioned policies which can zero-shot generalize to new LTL instructions not observed in the training. However, because symbolic observation is often lossy and LTL tasks can have long time horizon, previous works can suffer from issues such as training sampling inefficiency and infeasibility or sub-optimality of the found solutions. In order to tackle these issues, this paper proposes a novel multi-task RL algorithm with improved learning efficiency and optimality. To achieve the global optimality of task completion, we propose to learn options dependent on the future subgoals via a novel off-policy approach. In order to propagate the rewards of satisfying future subgoals back more efficiently, we propose to train a multi-step value function conditioned on the subgoal sequence which is updated with Monte Carlo estimates of multi-step discounted returns. In experiments on three different domains, we evaluate the LTL generalization capability of the agent trained by the proposed method, showing its advantage over previous representative methods.
translated by 谷歌翻译
Graph contrastive learning is an important method for deep graph clustering. The existing methods first generate the graph views with stochastic augmentations and then train the network with a cross-view consistency principle. Although good performance has been achieved, we observe that the existing augmentation methods are usually random and rely on pre-defined augmentations, which is insufficient and lacks negotiation between the final clustering task. To solve the problem, we propose a novel Graph Contrastive Clustering method with the Learnable graph Data Augmentation (GCC-LDA), which is optimized completely by the neural networks. An adversarial learning mechanism is designed to keep cross-view consistency in the latent space while ensuring the diversity of augmented views. In our framework, a structure augmentor and an attribute augmentor are constructed for augmentation learning in both structure level and attribute level. To improve the reliability of the learned affinity matrix, clustering is introduced to the learning procedure and the learned affinity matrix is refined with both the high-confidence pseudo-label matrix and the cross-view sample similarity matrix. During the training procedure, to provide persistent optimization for the learned view, we design a two-stage training strategy to obtain more reliable clustering information. Extensive experimental results demonstrate the effectiveness of GCC-LDA on six benchmark datasets.
translated by 谷歌翻译
The weakly supervised instance segmentation is a challenging task. The existing methods typically use bounding boxes as supervision and optimize the network with a regularization loss term such as pairwise color affinity loss for instance segmentation. Through systematic analysis, we found that the commonly used pairwise affinity loss has two limitations: (1) it works with color affinity but leads to inferior performance with other modalities such as depth gradient, (2)the original affinity loss does not prevent trivial predictions as intended but actually accelerates this process due to the affinity loss term being symmetric. To overcome these two limitations, in this paper, we propose a novel asymmetric affinity loss which provides the penalty against the trivial prediction and generalizes well with affinity loss from different modalities. With the proposed asymmetric affinity loss, our method outperforms the state-of-the-art methods on the Cityscapes dataset and outperforms our baseline method by 3.5% in mask AP.
translated by 谷歌翻译
Graph anomaly detection (GAD) is a vital task in graph-based machine learning and has been widely applied in many real-world applications. The primary goal of GAD is to capture anomalous nodes from graph datasets, which evidently deviate from the majority of nodes. Recent methods have paid attention to various scales of contrastive strategies for GAD, i.e., node-subgraph and node-node contrasts. However, they neglect the subgraph-subgraph comparison information which the normal and abnormal subgraph pairs behave differently in terms of embeddings and structures in GAD, resulting in sub-optimal task performance. In this paper, we fulfill the above idea in the proposed multi-view multi-scale contrastive learning framework with subgraph-subgraph contrast for the first practice. To be specific, we regard the original input graph as the first view and generate the second view by graph augmentation with edge modifications. With the guidance of maximizing the similarity of the subgraph pairs, the proposed subgraph-subgraph contrast contributes to more robust subgraph embeddings despite of the structure variation. Moreover, the introduced subgraph-subgraph contrast cooperates well with the widely-adopted node-subgraph and node-node contrastive counterparts for mutual GAD performance promotions. Besides, we also conduct sufficient experiments to investigate the impact of different graph augmentation approaches on detection performance. The comprehensive experimental results well demonstrate the superiority of our method compared with the state-of-the-art approaches and the effectiveness of the multi-view subgraph pair contrastive strategy for the GAD task.
translated by 谷歌翻译
In recent years, semi-supervised graph learning with data augmentation (DA) is currently the most commonly used and best-performing method to enhance model robustness in sparse scenarios with few labeled samples. Differing from homogeneous graph, DA in heterogeneous graph has greater challenges: heterogeneity of information requires DA strategies to effectively handle heterogeneous relations, which considers the information contribution of different types of neighbors and edges to the target nodes. Furthermore, over-squashing of information is caused by the negative curvature that formed by the non-uniformity distribution and strong clustering in complex graph. To address these challenges, this paper presents a novel method named Semi-Supervised Heterogeneous Graph Learning with Multi-level Data Augmentation (HG-MDA). For the problem of heterogeneity of information in DA, node and topology augmentation strategies are proposed for the characteristics of heterogeneous graph. And meta-relation-based attention is applied as one of the indexes for selecting augmented nodes and edges. For the problem of over-squashing of information, triangle based edge adding and removing are designed to alleviate the negative curvature and bring the gain of topology. Finally, the loss function consists of the cross-entropy loss for labeled data and the consistency regularization for unlabeled data. In order to effectively fuse the prediction results of various DA strategies, the sharpening is used. Existing experiments on public datasets, i.e., ACM, DBLP, OGB, and industry dataset MB show that HG-MDA outperforms current SOTA models. Additionly, HG-MDA is applied to user identification in internet finance scenarios, helping the business to add 30% key users, and increase loans and balances by 3.6%, 11.1%, and 9.8%.
translated by 谷歌翻译
Recently, graph anomaly detection has attracted increasing attention in data mining and machine learning communities. Apart from existing attribute anomalies, graph anomaly detection also captures suspicious topological-abnormal nodes that differ from the major counterparts. Although massive graph-based detection approaches have been proposed, most of them focus on node-level comparison while pay insufficient attention on the surrounding topology structures. Nodes with more dissimilar neighborhood substructures have more suspicious to be abnormal. To enhance the local substructure detection ability, we propose a novel Graph Anomaly Detection framework via Multi-scale Substructure Learning (GADMSL for abbreviation). Unlike previous algorithms, we manage to capture anomalous substructures where the inner similarities are relatively low in dense-connected regions. Specifically, we adopt a region proposal module to find high-density substructures in the network as suspicious regions. Their inner-node embedding similarities indicate the anomaly degree of the detected substructures. Generally, a lower degree of embedding similarities means a higher probability that the substructure contains topology anomalies. To distill better embeddings of node attributes, we further introduce a graph contrastive learning scheme, which observes attribute anomalies in the meantime. In this way, GADMSL can detect both topology and attribute anomalies. Ultimately, extensive experiments on benchmark datasets show that GADMSL greatly improves detection performance (up to 7.30% AUC and 17.46% AUPRC gains) compared to state-of-the-art attributed networks anomaly detection algorithms.
translated by 谷歌翻译